指令调整已被证明可以改善零样本学习Wei等人(2022)(opens in a new tab)。指令调整本质上是在通过指令描述的数据集上微调模型的概念。此外,RLHF(opens in a new tab)(来自人类反馈的强化学习)已被采用以扩展指令调整,其中模型被调整以更好地适应人类偏好。这一最新发展推动了像ChatGPT这样的模型。我们将在接下来的章节中讨论所有这些方法和方法。 当零样本不起作用时,建议在提示中提供演示或示例,这就引出了少样本提示。
指令调整已被证明可以改善零样本学习Wei等人(2022)(opens in a new tab)。指令调整本质上是在通过指令描述的数据集上微调模型的概念。此外,RLHF(opens in a new tab)(来自人类反馈的强化学习)已被采用以扩展指令调整,其中模型被调整以更好地适应人类偏好。这一最新发展推动了像ChatGPT这样的模型。我们将在接下来的章节中讨论所有这些方法和方法。
当零样本不起作用时,建议在提示中提供演示或示例,这就引出了少样本提示。